Young people living with parents for longer

WONKHE reports there has been a significant rise in the number of 20 to 34-year-olds living with their parents in the UK, according to analysis of the Labour Force Survey by think tank Civitas.” The analysis, covered by the Financial Times, finds an increase of 791,600 under 35-year-olds living with their parents between 1996-8 and 2014-15. The rise has been noted in all UK regions, with the most pronounced results in London. Civitas puts the increase primarily down to the cost of housing, and suggests that HE participation could be a factor, as more young adults are financially dependent on their parents for longer.”

Th8s brings UK more into line with other countries in Europe, where young people tend to live at home with their parents until tehy are much older than has been in the UK. It also would be interesting to look at the figures (if available) for numbers of people studying at their home town university, rather than following the ‘rites of passage’ to move to college in another twon or city.

Developing a skills taxonomy

This morning’s mailing from the Marchmont Employment and Skills Observatory reports that NESTA have launched an interesting new Tool – a UK skills taxonomy:

“Skill shortages are costly and can hamper growth, but we don’t currently measure these shortages in a detailed or timely way. To address this challenge, we have developed the first data-driven skills taxonomy for the UK that is publicly available. A skills taxonomy provides a consistent way of measuring the demand and supply of skills. It can also help workers and students learn more about the skills that they need, and the value of those skills.” NESTA

It should help with careers guidance and is ideal for people looking at the return to differing career choices and how you get there. NESTA began with a list of just over 10,500 unique skills that had been mentioned within the descriptions of 41 million UK job adverts, collected between 2012 and 2017 and provided by Burning Glass Technologies. Machine learning was used to hierarchically cluster the skills. The more frequently two skills appeared in the same advert, the more likely it is that they ended up in the same branch of the taxonomy. The taxonomy therefore captures ‘the clusters of skills that we need for our jobs’.

The final taxonomy can be seen here and has a tree-like structure with three layers. The first layer contains 6 broad clusters of skills; these split into 35 groups, and then split once more to give 143 clusters of specific skills. Each of the approximately 10,500 skills lives within one of these 143 skill groups.

The skills taxonomy provide a rich set of data although requiring some work in interpretation. The six broad clusters of skills are:

The ten clusters (at the third layer) containing the most demanded skills are:

  1. Social work and caregiving
  2. General sales
  3. Software development
  4. Office administration
  5. Driving and automotive maintenance
  6. Business management
  7. Accounting and financial management
  8. Business analysis and IT projects
  9. Accounting administration
  10. Retail

The five skill clusters at the third layer with the highest annual median salaries are:

  1. Data engineering
  2. Securities trading
  3. IT security operations
  4. IT security standards
  5. Mainframe programming

The five clusters with the lowest salaries are:

  1. Premises security
  2. Medical administration
  3. Dental assistance
  4. Office administration
  5. Logistics administration

While the taxonomy is based on web data collected between 2012 and 2017, the approach has teh potential to be developed on the basis of real time data. And it is likely to be only one of a number of tools produced in the next two years using machine learning to analyse large data sets. The use of real-time data from web vacancies is receiving a lot of attention right now.

There is also interest in the idea of skills clusters in the ongoing debate over the impact of Artificial Intelligence on jobs and employment. Rather than whole occupations disappearing (and others surviving) it is more likely that the different skills required within occupations may change

Graduate Jobs

MPs on the UK House of Commons education committee have released a report titled “Value for Money in Higher Education.” They draw attention to figures from the Office for National Statistics (ONS) that indicated 49 percent of recent graduates (within five years of achieving their degree) were in non-graduate roles in 2017.

This is a significant increase over the proportion at the start of 2009, just after the 2008 financial crash, when 41 percent of recent graduates were in that position. It is matched by a very similar rise even among the population of graduates taken as a whole—including mature students—from 31 percent to 37 percent in the same years.

The report stated: “Higher education institutions must be more transparent about the labour market returns of their courses.” It came with the warning that “too many universities are not providing value for money, and … students are not getting good outcomes from the degrees for which so many of them rack up debt.”

As the title of the report implies, much of the attention on graduate employment is due to the political controversy over the funding of Higher Education in the UK and the cost of participation in degree courses.

But there is another issue which has received less attention: how graduate (and non graduate) jobs are defined.

The Office for National Statistics explains the classification system as follows

1.The skill level groups are created by grouping jobs together based on their occupation according to the Standard Occupation Classification (SOC) 2010 lower level groups. The occupation group is not available for some workers, these have been excluded from the total.

Occupations were grouped by the skill level required according to the following guidelines:

2,1. High – This skill level is normally acquired through a degree or an equivalent period of work experience. Occupations at this level are generally termed ‘professional’ or managerial positions, and are found in corporate enterprises or governments. Examples include senior government officials, financial managers, scientists, engineers, medical doctors, teachers and accountants.

2,2. Upper-middle – This skill level equates to competence acquired through post-compulsory education but not to degree level. Occupations found at this level include a variety of technical and trades occupations, and proprietors of small business. For the latter, significant work experience may be typical. Examples of occupations at this level include catering managers, building inspectors, nurses, police officers (sergeant and below), electricians and plumbers.

2,3. Lower-middle – This skill level covers occupations that require the same competence acquired through compulsory education, but involve a longer period of work-related training and experience. Examples of occupations at this level include machine operation, driving, caring occupations, retailing, and clerical and secretarial occupations.

2,4. Low – This skill level equates to the competence acquired through compulsory education. Job-related competence involves knowledge of relevant health and safety regulations and may be acquired through a short period of training. Examples of occupations at this level include postal workers, hotel porters, cleaners and catering assistants.

The sentence “Occupations at this level are generally termed ‘professional’ or managerial positions, and are found in corporate enterprises or governments.” Arguably this ignores ongoing changes in the economy with high skilled technical jobs being created by Small and Medium Enterprises rather than large corporations. As Malcolm Todd,  Provost (Academic) of the University of Derby, points out in an article in WonkHE: “The current government methodology of using traditional Standard Occupational Codes (SOC) to declare which roles are graduate level is dated. It’s not reflective of the current employment market and is not ready for the future job market. Codes are based on traditional views of careers and highly skilled roles, not the whole requirements of a role.”

He draws attention to Teaching Assistants working with pupils that have special education needs and disabilities, and emerging jobs in the growing retail, social care and hospitality, many of which require high skills but are classified as non graduate jobs. At the same time, jobs presently classified as requiring a degree such as accountants are like to decline due to automation and the use of Artificial Intelligence.

To some degree, the debate is clouded by a perception that graduate level jobs should command a higher salary (an argument used by the Government to justify high university tuition fees. Yet wage growth in the UK has been low across all sectors since the onset of the recession in 2008.

But with growing skills required in a range of different jobs, maybe it is time for a new look at how graduate jobs are classified or even whether dividing employment into graduate or non graduate occupations is relevant any more.

 

Leaving home

living at homeI’ve had this graphic hanging around for quite a while, so it may be out of date. I think the point of it is that like much data the figures are fascinating but it is quite difficult to interpret. Why do boys leave home earlier than girls? Why is there such a big difference between countries. Although obviously there will be differences between those countries where young people normally leave home to go to university and those where they usually move to another town or city. And I am sure some of it is explained by socio- economic factors. It costs money to leave home. But I am not sure this explains it all. I would be very interested in anyone else’s perspective on this data.

The development of Labour Market Information systems

Over the past few years, part of my work has been involved in the design and development of Labour Market Information Systems. But just as with any facet of using new technologies, there is a socio-technical background to the emergence and use of new systems.

Most countries today have a more or less elaborated Labour Market Information system. In general, we can trace three phases in the development of these systems (Markowitch, 2017). Until the 1990s, Labour Market Information systems, and their attendant classification systems, mainly provided statistics for macroeconomic analysis, policy and planning. Between the 1990s and 2005 they were extended to provide data around the structuring and functioning of the Labour markets.

Mangozho (2003) attributes the change as a move from an industrial society to a post-industrial society (and the move to transition economies in Eastern Europe). Such a definition may be contentious, but he usefully charts changes in Labor market structures which give rise to different information needs. “While previously, the economic situation (especially the job structure) was relatively stable, in the latter phase the need for LMI increases because the demand for skills and qualifications changes fundamentally; the demand for skills / qualifications changes constantly, and because of these changes, Vocational Education and Training (VET) system has to be managed more flexibly (ETF, 1998)’.

He says: “In the industrial/pre-transition periods:

  • The relationship between the education and training system and the Labor market was more direct.
  • Occupational structures changed very slowly and as such, the professional knowledge and skills could easily be transferred.
  • Planning, even for short-term courses, could be done well in advance, and there was no need to make any projections about the future demands of occupations
  • The types of subjects and the vocational content required for specific jobs were easily identifiable.
  • There was little need for flexibility or to design tailor-made courses.
  • The education system concentrated on abstract and theoretical knowledge as opposed to practical knowledge.
  • Steady economic growth made it possible for enterprises to invest in on the job training.
  • There was less necessity to assess the relevance and adequacy of the VET system because it was deemed as adequate.
  • A shortage of skills could easily be translated into an increase of the number of related training institutions or student enrolments without necessarily considering the cost effectiveness of such measures. (Sparreboom, T, 1999).
  • Immediate employment was generally available for those who graduated from the education and training systems.”

Changes in the structure and functioning of Labour markets and the VET systems led to a greater need for comprehensive LMI to aid in the process of interpreting these structural shifts and designing effective HRD policies and programs, which provide for more linkages between the education and training systems and the Labor market.

At the same time, the reduction in the role of the state as a major employment provider and the development of market economies gave impetus to the need for a different approach to manpower planning, where the results of Labor market analysis as well as market based signals of supply and demand for skills are made available to the various economic agents responsible for the formulation and implementation of manpower and employment policies and programmes.

This led to the establishment of formal institutions to co-ordinate the generation of LMI, for instance internet based Labour Market Information Systems and the setting up of Labour Market Observatories and the development of more tangible LMI products, which provide a broad up, dated knowledge of the developments on the Labour market for different users.

Since 2005, Labour Market Information systems have been once more extended to incorporate both matching of jobs to job seekers and matching of supply and demand within Labour markets, particularly related to skills.